DC Current & Voltage Transducers

DC voltage transducers measure DC voltage directly and the DC current transducers measure DC currents up to 10 Amps directly. Higher currents can be measured using a shunt and a DC voltage transducer.

The transducers convert the DC voltage or current signal (or DC millivolt value from the shunt) to either a DC mA or DC voltage output which is directly proportional to the input signal value. All DC transducers are powered from a large choice of AC or DC auxiliary power options.

The DC transducers offer isolation between the DC input signal and the DC output which can be used to prevent earth loops. The 4kV isolated output signals can then be fed to analogue meters, digital meters, PLC’s or building management systems.

For converting DC signals to a proportional DC mA or DC voltage output

Models Available
- **EDCC** Auxiliary Powered DC Current
- **EDCV** Auxiliary Powered DC Voltage

Product Features
- Isolated DC mA or DC voltage output
- Accuracy class 0.25
- Adjustable ‘span’ and ‘zero’
- DIN rail mounting enclosure
- 4kV rms 50Hz 1 minute isolation between input / output / case / auxiliary
- Screw type terminals
- Fingerproof terminal cover included

Specification

Reference Standard:
- IEC 688, BS 6253, VDE/VDI 2191

Accuracy:
- Class 0.25 (±0.25% f.s. max. error)

Input Current, I_n:
- 0-1mA to 0-10A direct connected
- 50, 60, 75mV shunt operated

Input Voltage, U_n:
- 0-20mV to 0-1000V direct connected

Overload:
- $1.2 \times U_n$, $2 \times U_n$ continuous
- $1.5 \times U_n$, $30 \times U_n$ for 1 second

Working Range:
- 0 - 120% U_n

Burden:
- EDCC < 0.3VA
- EDCV < 0.2VA

Weight:
- EDCC, EDCV 600g

Connections

EDCC
- Direct Connection

EDCV
- Shunt Operated

Connections Diagram

Eltime Controls Tel: +44 (0) 1621 859500 Fax: +44 (0) 1621 855335
Ordering information

<table>
<thead>
<tr>
<th>Model</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EDCC</td>
<td>Auxiliary Powered DC Current</td>
</tr>
<tr>
<td></td>
<td>EDCV</td>
<td>Auxiliary Powered DC Voltage</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Input Voltage/Current</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CX</td>
<td>±1mA to ±10A (specify)</td>
</tr>
<tr>
<td></td>
<td>CA</td>
<td>4-20mA</td>
</tr>
<tr>
<td></td>
<td>VX</td>
<td>±20mV to ±1000V (specify)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Auxiliary Power</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E1</td>
<td>110Vac (±20%)</td>
</tr>
<tr>
<td></td>
<td>E2</td>
<td>230Vac (±20%)</td>
</tr>
<tr>
<td></td>
<td>E3</td>
<td>415Vac (±20%)</td>
</tr>
<tr>
<td></td>
<td>E4</td>
<td>63.5Vac (±20%)</td>
</tr>
<tr>
<td></td>
<td>E5</td>
<td>24Vdc (±20%)</td>
</tr>
<tr>
<td></td>
<td>E6</td>
<td>48Vdc (±20%)</td>
</tr>
<tr>
<td></td>
<td>E7</td>
<td>110Vdc (±20%)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output</th>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>X1</td>
<td>±1mA</td>
</tr>
<tr>
<td></td>
<td>X2.5</td>
<td>±2.5mA</td>
</tr>
<tr>
<td></td>
<td>X5</td>
<td>±5mA</td>
</tr>
<tr>
<td></td>
<td>X10</td>
<td>±10mA</td>
</tr>
<tr>
<td></td>
<td>X10B</td>
<td>0-5-10mA</td>
</tr>
<tr>
<td></td>
<td>X20</td>
<td>±20mA</td>
</tr>
<tr>
<td></td>
<td>XA</td>
<td>4-20mA</td>
</tr>
<tr>
<td></td>
<td>XB</td>
<td>4-12-20mA</td>
</tr>
<tr>
<td></td>
<td>XV</td>
<td>±Voltage (specify up to 15Vdc)</td>
</tr>
</tbody>
</table>

Example

EDCC - CX(5Adc) - E1 - XA

Function Graphs

![Function Graphs](image)

Dimensions

![Dimensions](image)
General Specification

Output
Response Time: < 5ms for 0-90% of input value
Warm Up Time: < 15 minutes
Residual Output Ripple: < 1% peak full scale
Long Term Drift: ±0.25% per year non-cumulative
Maximum Load:
- 1mA < 10kohm
- 2.5mA < 6kohm
- 5mA < 3kohm
- 10mA < 1.5kohm
- 20mA < 750ohm
Voltage output > 1kohm
Self powered voltage and current transducers have an adjustable span while all other units have an adjustable zero and span accessible from the front panel.

Auxiliary
AC: 110 / 230 / 415V (±20%) (others upon request)
DC: 24 / 48 / 110V (±20%)

Environmental
Operating Temperature: -20°C to 65°C
Storage Temperature: -40°C to 75°C
Variation With Temperature: 0.03%/°C (±0.5% maximum)
Relative Humidity: 0 - 95% non-condensing

Burden
Input Circuits: See individual specifications
Auxiliary Power Supply: 7VA combined Watt/Var transducers (4VA all other transducers)

EMC Compliance
Directive 89/336/EEC:
- Electrostatic discharge IEC801.2 (8kV)
- Electromagnetic fields IEC801.3 level 3
- Fast transient bursts IEC801.4 level 4
- Surge withstand IEC255-5

Enclosure
Enclosure: Grey ABS plastic with finger proof terminal covers
Enclosure Code: Case IP50, terminals IP10 to IEC529 and BS5490
Isolation: 4kV rms 50Hz 1 min (to IEC 414) between input / output / case / AC auxiliary (2kV rms 50Hz 1 min for EK energy transducers)
1kVdc / 600Vac between Watt & Var outputs (EPQ units)
Mounting: 35mm DIN rail (DIN-EN 50022)
Markings: CE marked

Specification subject to change without notice.

Options

Non Standard Calibration
All transducers are supplied calibrated to standard input values as detailed in the individual specifications, however non-standard calibration input values can be specified (subject to technical viability).

Wide Output Adjust Switch on Power Transducers
All power transducers are available with a ten position switch accessible from the front panel which provides coarse adjustment of the output signal between 50% and 200% of the nominal.

Calibration Certificate
Calibration certificates traceable to national standards can be supplied on all transducers.

Conformal Coating
A conformal coating can be applied to the transducer circuitry during manufacture for transducers that will be operating in harsh environmental conditions.